Test 测试一下 如果想发布中文,必须用utf-8编码。
$$ \def\ud{\mathrm{d}}
\def\RR{\bf R}
\def\bold#1{\bf #1}$$
$x > 0$ $$ \left(r,r\right) $$ $$ < r,r > $$ When $a \ne 0$, there are two solutions to (ax^2 + bx + c = 0) and they are $$x = {-b \pm \sqrt{b^2-4ac} \over 2a}.$$
$$\mathbf{V}_1 \times \mathbf{V}_2 = \begin{vmatrix}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{\partial X}{\partial u} & \frac{\partial Y}{\partial u} & 0 \\
\frac{\partial X}{\partial v} & \frac{\partial Y}{\partial v} & 0
\end{vmatrix}$$
$$1 + \frac{q^2}{(1-q)}+\frac{q^6}{(1-q)(1-q^2)}+\cdots =
\prod_{j=0}^{\infty}\frac{1}{(1-q^{5j+2})(1-q^{5j+3})},
\quad\quad \text{for $|q|1$}.$$
$$f(x) = {\frac{1}{\sigma \sqrt{2\pi}} } e^{- \frac{(x-\mu )^2 }{ 2\sigma^2}} \\\\
\Phi(x) = \int_{-\infty}^{x} {\frac{1}{\sigma \sqrt{2\pi}} } e^{- \frac{(t-\mu )^2 }{ 2\sigma^2}} \ud t$$
Flory $$ < r,r > ^{\frac{1}{2}} = \left(\frac{1}{2}\right)^{\frac{1}{5}}aN^{\frac{3}{5}}$$
对于尖括号,必须在两端加空格,或者用’\lt’或’<’代替: $$ < \lt < > \gt > $$
带下标的公式必须用block $P(X_t| Y_{1:t-1})$
$$\begin{equation}
f(x) = {\frac{1}{\sigma \sqrt{2\pi}} } e^{- \frac{(x-\mu )^2 }{ 2\sigma^2}}
\end{equation}$$
MathJax 官方文档说明:http://docs.mathjax.org/en/latest/tex.html
Code Test
HelloWorld.c My_blog 1
2
3
4
5
6
7
#include <iostream>
using namespace std ;
int main() {
return 0 ;
}